COMPARISON OF HYDROGEN CONCENTRATION SENSOR MQ-2 TO THE AREA AND COLOR OF FLAME FROM ELECTROLYSIS OF WATER

  • Bernardus Crisanto Putra Mbulu Universitas Katolik WIdya Karya Malang
  • Danang Murdiyanto Universitas Katolik Widya Karya
  • Mietra Anggara Universitas Teknologi Sumbawa
Keywords: ppm hydrogen, electrolyte solution, flame area, flame color

Abstract

Hydrogen is a fuel that is being developed today as a substitute for fossil fuels that are depleting. One way to produce hydrogen fuel is through the electrolysis method using a water-based HHO generator. This study aims to determine how much hydrogen is produced from each electrolyte solution, which is then compared to the area and color of the resulting flame. The comparison of each electrolyte solution comes from the ratio of moles of solute and solvent (H2O), which is 1:12, with the solutes used being NaCl, CH3COOH, and NaHCO3. The concentration of hydrogen gas produced is detected using the MQ-2 sensor. At the same time, the area and color of the flames are obtained through the results of a 20-minute combustion video, which is made into 100 photo frames for each electrolyte solution. The results of this study showed that the average hydrogen production for NaCl solute was 891.0 ppm and the flame area was 12.64 mm2 without blue color, the solute CH3COOH was 917.33 ppm, the flame area was 16.46 mm2 with 40.52% blue color, and NaHCO3 solute was 980.67 ppm with a flame area of 17.47 mm2 with 76.19% blue color

Downloads

Download data is not yet available.

References

B. C. P. Mbulu, “Pengaruh Penambahan Ampas Kopi Pada Biogas Terhadap Hasil Serta Laju Produksi Metana Dan Karbon Dioksida,†in Prosiding Seminar Nasional Riset dan Teknologi Terapan (RITEKTRA), 2021, hal. D5–D5.

A. R. H. Firdaus dan S. Sudarti, “Analisis Potensi Hidrogen Air Laut di Banyuwangi Melalui Proses Elektrolisis Sebagai Energi Terbarukan,†J. Energi Baru dan Terbarukan, vol. 3, no. 2, hal. 173–178, 2022, doi: 10.14710/jebt.2022.14286.

I. N. Budiarthan, “Gas Production in Electrolysis Process on Construction of Hho Gas Generator With Spiral and Sheets Shape Electrode By Using Sodium Hydroxide, Sodium Chloride and Baking Soda As Catalysts,†Logic, vol. 13, no. 1, hal. 61–67, 2013.

M. Taufiq, Margianto, dan E. Marlina, “Pengaruh Variasi Prosentase Katalis NaHCO3 Terhadap Produksi Brown’s Gas pada Proses Elektrolisis Air Dengan Menggunakan Alat Tipe Dry Cell,†J. Sains Teknol. Mesin Unisma, no. 1, 2017.

A. D. Shabahaini dan M. Tamjidillah, “Pengaruh Jarak Antar Elektroda Plat Besi Terhadap Produktivitas Dan Efisiensi Generator Hho Menggunakan Metode Elektrolisis Air Laut Dengan Katalis Koh,†Sci. J. Mech. Eng. Kinemat., vol. 4, no. 1, hal. 95–107, 2019, doi: 10.20527/sjmekinematika.v4i1.56.

Y. Wahyono, H. Sutanto, dan E. Hidayanto, “Produksi gas hydrogen menggunakan metode elektrolisis dari elektrolit air dan air laut dengan penambahan katalis NaOH,†Youngster Phys. J., vol. 6, no. 4, hal. 353–359, 2017.

A. D. Prasetyo, B. C. P. Mbulu, dan D. Murdiyanto, “Analisis Pengaruh Variasi Jumlah KOH Dan Variasi Jumlah NaCl Yang Terlarut Dalam Air Terhadap Nilai Konsentrasi Gas Hidrogen Yang Dihasilkan Oleh Generator HHO Tipe Dry Cell,†Universitas Katolik Widya Karya Malang, 2020.

T. Suprianto, N. M. Widiawan, P. N. Banjarmasin, dan P. Hasnur, “Pengaruh Larutan Natrium Bikarbonat,†in Prosiding Seminar Nasional Riset dan Teknologi Terapan, 2016, vol. 5662, hal. 9–10.

N. Saksono, F. Abqari, dan S. Bismo, “Aplikasi Teknologi Elektrolisis Plasma Pada Proses Produksi Klor-Alkali,†Tek. Kim. Indones., vol. 11, no. 3, hal. 141–148, 2012.

Masmiani, “Larutan Elektrolit , Larutan Non Elektrolit, dan Asam Basa,†Kemdikbud Pppptk Ipa, no. 12, hal. 1–10, 2015.

T. Suryana, “Implementasi Modul Sensor MQ2 Untuk Mendeteksi Adanya Polutan Gas di Udara,†J. Komputa Unikom, hal. 1–15, 2021, [Daring]. Tersedia pada: http://iot.ciwaruga.com

T. Armijos-Moya, P. de Visser, M. Ottelé, A. van den Dobbelsteen, dan P. M. Bluyssen, “Air cleaning performance of two species of potted plants and different substrates,†Appl. Sci., vol. 12, no. 1, 2022, doi: 10.3390/app12010284.

R. S. Oguike, “Corrosion Studies on Stainless Steel (FE6956) in Hydrochloric Acid Solution,†Adv. Mater. Phys. Chem., vol. 04, no. 08, hal. 153–163, 2014, doi: 10.4236/ampc.2014.48018.

Syamsidar, Dasar Reaksi Anorganik. 2013.

M. Fazlunnazar dan L. Hakim, “Produksi Gas Hidrogen Dari Air Laut Dengan Metode Elektrolisis Menggunakan Elektroda Tembaga Dan Alumunium (Cu Dan Al),†J. Teknol. Kim. Unimal 91, no. Mei, hal. 58–66, 2020.

B. Crisanto Putra, I. N. G. Wardana, dan E. Siswanto, “Produksi Hidrogen dari Campuran Air dan Minyak Kelapa Murni (VCO) melalui Porous Media Tembaga menggunakan Prinsip Hydrogen Reformer,†J. Rekayasa Mesin, vol. 7, no. 2, hal. 87–93, 2016, doi: 10.21776/ub.jrm.2016.007.02.6.

M. N. Sasongko, N. Hamidi, dan W. Denny, “Karakteristik pembakaran difusi dan premiks bahan bakar biogas,†Malang, 2014.

Published
2023-06-12
How to Cite
[1]
B. C. P. Mbulu, Danang Murdiyanto, and M. Anggara, “COMPARISON OF HYDROGEN CONCENTRATION SENSOR MQ-2 TO THE AREA AND COLOR OF FLAME FROM ELECTROLYSIS OF WATER”, SJMEkinematika, vol. 8, no. 1, pp. 1-12, Jun. 2023.