AIRFLOW PATTERNS IN A HELICAL SAVONIUS WIND TURBINE WITH VARIATIONS BLADE NUMBERS USING CFD METHOD

  • Muhammad Harist Mishbahuddin universitas Sebelas Maret
  • Taufik Wisnu Saputra Universitas Sebelas Maret
  • Danar S. Wijayanto Universitas Sebelas Maret
Keywords: helical savonius wind turbine, computational fluid dynamics, number of blades, airflow patterns

Abstract

The availability of fossil resources is decreasing, cause government and private sectors to race in developing renewable energy. One solution is to create Wind Power Plants to meet energy demands. The Savonius turbine, also known VAWT, this great potential to meet small-scale energy needs. Savonius turbines have lower performance compared to other types. This performance needs to be enhanced through design modifications, such as varying the number of blades. This research purpose is to analyze effect number of blades on performance of helical Savonius turbines. This research focuses on airflow patterns with varying blade numbers in helical Savonius turbines. These turbines numerically studied using Computational Fluid Dynamics (CFD) approach with ANSYS Fluent. Each variation of blade numbers will simulate at wind speeds between 1 to 5 m/s. Numerical testing results will provide visualizations in form contour and vector within pressure or velocity scope for each variation. Based on visualization of numerical testing results, found that number of blades affects flow patterns. Increasing the number of blades increases turbulence flow. Pressure on convex surface also increases with the addition of blades. These two airflow phenomena reduce turbine performance, so two blades produce most optimal performance due to minimal resistance they experience.

Downloads

Download data is not yet available.

References

S. Ulina, S. Hasan, E. Warman, and Y. T. Nugraha, “Analisis Potensi Energi Baru dan Terbarukan Di Sumatera Utara Sampai Tahun 2028 Menggunakan Software LEAP,” RELE (Rekayasa Elektr. dan Energi) J. Tek. Elektro, vol. 5, no. 1, pp. 4–8, 2022, doi: 10.30596/rele.v5i1.10786.

D. Rudianto, “Rancang Bangun Turbin Angin Savonius 200 Watt,” Conf. Senat. STT Adisutjipto Yogyakarta, vol. 2, p. 71, 2016, doi: 10.28989/senatik.v2i0.35.

M. Irfan, “Simulasi Dan Perancangan Bilah Turbin Angin Savonius Heliks Dengan Memanfaatkan Fenomena Angin Pada Gedung Tinggi,” Sci. J. Mech. Eng. Kinemat., vol. 7, no. 1, pp. 9–26, 2022, doi: 10.20527/sjmekinematika.v7i1.211.

I. Arif, “Analisis dan Pengujian Kinerja Turbin Angin Savonius 4 Sudu,” J. Tek. Mesin ITI, vol. 3, no. 2, p. 46, 2019, doi: 10.31543/jtm.v3i2.307.

I. Herlamba S, M. Effendy, and A. Hafizh R A, “Pengaruh Penambahan Free dan Fix Drag Reducing Pada Bilah terhadap Kinerja Turbin Angin Savonius Effects of Addition of Free and Fix Drag Reducing On Blades to the Performance of Savonius Wind Turbine,” journal.unesa.ac.id, vol. 13, pp. 63–66, 2018, doi: https://doi.org/10.26740/otopro.v13n2.p63-66.

Z. Lillahulhaq, I. Masfufiah, and I. Amirullah, “Experimental Study of Circular Cut Off Endplate Effect on the Savonius Turbine,” Sci. J. Mech. Eng. Kinemat., vol. 7, no. 1, pp. 63–72, 2022, doi: 10.20527/sjmekinematika.v7i1.202.

A. Kumar and R. P. Saini, “Performance parameters of Savonius type hydrokinetic turbine - A Review,” Renew. Sustain. Energy Rev., vol. 64, pp. 289–310, 2016, doi: 10.1016/j.rser.2016.06.005.

D. Suanggana, “Analisis Jumlah dan Sudut Blade terhadap Kecepatan dan Tekanan Turbin Air Savonius dengan Metode CFD,” JTM-ITI (Jurnal Tek. Mesin ITI), vol. 5, no. 3, p. 119, 2021, doi: 10.31543/jtm.v5i3.624.

A. Sanusi, “Simulasi Aliran Fluida pada Blade Rotor Turbin Angin Savonius dengan Computation Fluid Dynamics (CFD),” Lontar J. Tek. Mesin Undana, vol. 4, no. 1, pp. 11–15, 2017.

Siregar I H, “Uji Eksperimental Pengaruh Jumlah Fin Posisi Vertikal Pada Turbin Angin Savonius Bentuk U Terhadap Daya Dan Efisiensi,” ejournal.unesa.ac.id, vol. 8, pp. 49–54, 2020.

J. N. Simanjuntak, S. Tangkuman, and I. Rondonuwu, “Simulasi Pengaruh Jumlah Dan Panjang Sudu Terhadap Daya Turbin Angin Tipe Poros Horisontal,” J. Online Poros Tek. Mesin, vol. 10, 2020.

Y. F. Kusuma and A. S. Kasman, “Kajian Efek Angin Pada Bangunan Tinggi Menggunakan Computational Fluid Dynamics,” J. Aero Technol., vol. 1, no. 2, pp. 10–18, 2018

M. Zaenudin, “Analysis Of Injection Plastic Molding Tensile Test Specimen,” vol. 9, no. 1, pp. 46–54, 2024, doi: 10.20527/sjmekinematika.v9i1.278.

N. Nurhaliza, Y. S. Putra, and A. A. Kushadiwijayanto, “Studi Numerik Pola Aliran di Sekitar Pintu Air Menggunakan Pendekatan Komputasi Dinamika Fluida,” Prism. Fis., vol. 10, no. 3, p. 241, 2023, doi: 10.26418/pf.v10i3.57851.

S. Maulana, “Pemanfaatan Computational Fluid Dynamics (CFD) Dalama Strategi Penelitian Simulasi Model Pada Teknologi Penghawaan Ruang,” Educ. Build., vol. 2, no. 2, pp. 10–13, 2016, doi: 10.24114/eb.v2i2.4393.

C. Song, G. Wu, W. Zhu, X. Zhang, and J. Zhao, “Numerical investigation on the effects of airfoil leading edge radius on the aerodynamic performance of H-rotor Darrieus vertical axis wind turbine,” Energies, vol. 12, no. 19, 2019, doi: 10.3390/en12193794.

C. Kang, H. Liu, and X. Yang, “Review of fluid dynamics aspects of Savonius-rotor-based vertical-axis wind rotors,” Renew. Sustain. Energy Rev., vol. 33, pp. 499–508, 2014, doi: 10.1016/j.rser.2014.02.011.

Q. Fitriyah, “Aplikasi Hukum Bernoulli pada Alat Peraga Flow Meter untuk Praktikum Mekanika Fluida,” Pros. Semin. Nas. NCIET, vol. 1, no. 1, pp. 277–285, 2020, doi: 10.32497/nciet.v1i1.97.

Published
2024-09-14
How to Cite
[1]
M. Harist Mishbahuddin, T. W. Saputra, and D. S. Wijayanto, “AIRFLOW PATTERNS IN A HELICAL SAVONIUS WIND TURBINE WITH VARIATIONS BLADE NUMBERS USING CFD METHOD”, SJMEkinematika, vol. 9, no. 2, pp. 141-152, Sep. 2024.