ANALYSIS OF THE PYROLYSIS PROCESS OF HDPE AND PET PLASTIC WASTE: THE EFFECT OF TEMPERATURE AND REACTION TIME IN PLASTIC RECYCLING EFFORTS

  • A yan Sabitah Politeknik Negeri Banjarmasin
  • Ichwan Noor Ardiyat Politeknik Negeri Banjarmasin
  • Misbachudin Misbachudin Politeknik Negeri Banjarmasin
  • Ikna Urwatul Wusko Politeknik Negeri Banjarmasin
  • Rahma Pitria Ningsih Politeknik Negeri Banjarmasin
Keywords: Plastic waste, Pyrolysis, Temperature, Reaction time

Abstract

Plastic waste is a significant environmental challenge, but its management is still not fully effective. Common methods such as garbage disposal, combustion, and recycling have their limitations, especially the release of harmful compounds during low-temperature plastic burning. Therefore, research continues to look for better solutions. One promising approach is pyrolysis, a process in which plastic molecules break down at high temperatures in an inert gas environment. Pyrolysis produces solid, liquid, and gas products, with liquids potentially functioning as biofuels after further repairs. The study discussed the influence of temperature and time on the pyrolysis of HDPE and PET plastics. The results showed that temperature is a critical factor, with a limited reaction temperature between 500 °C and 700 °C. Results of the pyrolyse process include tar/liquid and char/ solid residues. Strangely, 3 kg HDPE produce the highest amount of tar, about 973 ml, while 3 kg PET produce the least, about 89 ml. Overall, achieving a uniform heat distribution and optimal temperature is crucial to improving the efficiency and quality of the pirolysis product.

Downloads

Download data is not yet available.

References

R. C. Thompson, C. J. Moore, F. S. V. Saal, and S. H. Swan, “Plastics, the environment and human health: current consensus and future trends,†Philos. Trans. R. Soc. B Biol. Sci., vol. 364, no. 1526, pp. 2153–2166, Jul. 2009, doi: 10.1098/RSTB.2009.0053.

K. B. Park, Y. S. Jeong, and J. S. Kim, “Activator-assisted pyrolysis of polypropylene,†Appl. Energy, vol. 253, p. 113558, Nov. 2019, doi: 10.1016/J.APENERGY.2019.113558.

M. Venturelli, E. Falletta, C. Pirola, F. Ferrari, M. Milani, and L. Montorsi, “Experimental evaluation of the pyrolysis of plastic residues and waste tires,†Appl. Energy, vol. 323, p. 119583, Oct. 2022, doi: 10.1016/J.APENERGY.2022.119583.

I. Ahmad et al., “Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products,†Int. J. Green Energy, vol. 12, no. 7, pp. 663–671, Jul. 2015, doi: 10.1080/15435075.2014.880146.

S. Orozco, M. Artetxe, G. Lopez, M. Suarez, J. Bilbao, and M. Olazar, “Conversion of HDPE into Value Products by Fast Pyrolysis Using FCC Spent Catalysts in a Fountain Confined Conical Spouted Bed Reactor,†ChemSusChem, vol. 14, no. 19, pp. 4291–4300, Oct. 2021, doi: 10.1002/CSSC.202100889.

Y. Huo, F. A. Dijkstra, M. Possell, and B. Singh, “Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: A meta-analysis,†Environ. Pollut., vol. 310, p. 119892, Oct. 2022, doi: 10.1016/J.ENVPOL.2022.119892.

S. M. R. Mirkarimi, S. Bensaid, and D. Chiaramonti, “Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review,†Appl. Energy, vol. 327, p. 120040, Dec. 2022, doi: 10.1016/J.APENERGY.2022.120040.

K. Janarthanan and P. Sivanandi, “Extraction and characterization of waste plastic pyrolysis oil for diesel engines,†J. Clean. Prod., vol. 366, p. 132924, Sep. 2022, doi: 10.1016/J.JCLEPRO.2022.132924.

S. Prabu and K. Y. Chiang, “Highly active Ni–Mg–Al catalyst effect on carbon nanotube production from waste biodegradable plastic catalytic pyrolysis,†Environ. Technol. Innov., vol. 28, p. 102845, Nov. 2022, doi: 10.1016/J.ETI.2022.102845.

D. Wu et al., “Commodity plastic burning as a source of inhaled toxic aerosols,†J. Hazard. Mater., vol. 416, p. 125820, Aug. 2021, doi: 10.1016/J.JHAZMAT.2021.125820.

N. Zhou et al., “Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production,†Chem. Eng. J., vol. 418, p. 129412, Aug. 2021, doi: 10.1016/J.CEJ.2021.129412.

R. Palos et al., “Assessing the potential of the recycled plastic slow pyrolysis for the production of streams attractive for refineries,†J. Anal. Appl. Pyrolysis, vol. 142, p. 104668, Sep. 2019, doi: 10.1016/J.JAAP.2019.104668.

A. Amrullah, O. Farobie, H. Irawansyah, M. Lutfi, and L. Noviani Haty, “Synergistic enhancement of bio-oil production, quality, and optimization from co-pyrolysis purun tikus (Eleocharis dulcis) and plastic waste using response surface methodology,†Process Saf. Environ. Prot., vol. 187, pp. 471–482, 2024, doi: https://doi.org/10.1016/j.psep.2024.04.079.

A. Amrullah et al., “Slow Pyrolysis of Ulva lactuca (Chlorophyta) for Sustainable Production of Bio-Oil and Biochar,†Sustain., vol. 14, no. 6, pp. 1–14, 2022, doi: 10.3390/su14063233.

N. H. Ilyas Sofana, Widya Wijayanti, “CO-PYROLYSIS OF SCRAP TIRES (ST) DAN PLASTIK POLYPROPYLENE (PP): DISTRIBUSI PRODUK DAN PROPERTIS FISIK PYRO-OIL,†Rekayasa Mesin, vol. 13, no. Agustus, pp. 659 – 665, 2022, doi: https://doi.org/10.21776/jrm.v13i3.952.

J. Escalante et al., “Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach,†Renew. Sustain. Energy Rev., vol. 169, no. August, p. 112914, 2022, doi: 10.1016/j.rser.2022.112914.

P. Nalluri, P. Prem Kumar, and M. R. Ch Sastry, “Experimental study on catalytic pyrolysis of plastic waste using low cost catalyst,†Mater. Today Proc., vol. 45, pp. 7216–7221, Jan. 2021, doi: 10.1016/J.MATPR.2021.02.478.

O. K. M. Ouda, S. A. Raza, A. S. Nizami, M. Rehan, R. Al-Waked, and N. E. Korres, “Waste to energy potential: A case study of Saudi Arabia,†Renew. Sustain. Energy Rev., vol. 61, pp. 328–340, Aug. 2016, doi: 10.1016/J.RSER.2016.04.005.

W. Wijayanti, “Efek Zeolit untuk Produksi Tar dan Char pada Pirolisis Rotary Kiln,†J. Rekayasa Mesin, vol. 12, no. 1, p. 51, 2021, doi: 10.21776/ub.jrm.2021.012.01.6.

E. C. R. Lopez, “The Present and the Future of Polyethylene Pyrolysis,†Eng. Proc. 2023, Vol. 37, Page 74, vol. 37, no. 1, p. 74, May 2023, doi: 10.3390/ECP2023-14695.

M. H. Rahman, P. R. Bhoi, and P. L. Menezes, “Pyrolysis of waste plastics into fuels and chemicals: A review,†Renew. Sustain. Energy Rev., vol. 188, p. 113799, Dec. 2023, doi: 10.1016/J.RSER.2023.113799.

Published
2024-06-27
How to Cite
[1]
A. yan Sabitah, I. N. Ardiyat, M. Misbachudin, I. U. Wusko, and R. P. Ningsih, “ANALYSIS OF THE PYROLYSIS PROCESS OF HDPE AND PET PLASTIC WASTE: THE EFFECT OF TEMPERATURE AND REACTION TIME IN PLASTIC RECYCLING EFFORTS”, SJMEkinematika, vol. 9, no. 1, pp. 98-106, Jun. 2024.